Advanced Statistics for the Behavioral Sciences A Computational Approach with R /

This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elega...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Brown, Jonathon D. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319935492
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618115011.0
007 cr nn 008mamaa
008 190430s2018 gw | s |||| 0|eng d
020 |a 9783319935492 
024 7 |a 10.1007/978-3-319-93549-2  |2 doi 
035 |a CVTIDW06502 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Brown, Jonathon D.  |4 aut 
245 1 0 |a Advanced Statistics for the Behavioral Sciences  |h [electronic resource] :  |b A Computational Approach with R /  |c by Jonathon D. Brown. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXI, 526 p. 244 illus., 207 illus. in color.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Linear Equations -- Least Squares Estimation -- Linear Regression -- Eigen Decomposition -- Singular Value Decomposition -- Generalized Least Squares Estimation -- Robust Regression -- Model Selection and Biased Estimation -- Cubic Splines and Additive Models -- Nonlinear Regression and Optimization -- Generalized Linear Models -- Survival Analysis -- Time Series Analysis -- Mixed Effects Models. . 
516 |a text file PDF 
520 |a This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elegant computer code. Unfortunately, many researchers lack this programming background, leaving them to accept on faith the black-box output that emerges from the sophisticated statistical models they frequently use. Building on the author's previous volume, Linear Models in Matrix Form, this text bridges the gap between computer science and research application, providing easy-to-follow computer code for many statistical analyses using the R software environment. The text opens with a foundational section on linear algebra, then covers a variety of advanced topics, including robust regression, model selection based on bias and efficiency, nonlinear models and optimization routines, generalized linear models, and survival and time-series analysis. Each section concludes with a presentation of the computer code used to illuminate the analysis, as well as pointers to packages in R that can be used for similar analyses and nonstandard cases. The accessible code and breadth of topics make this book an ideal tool for graduate students or researchers in the behavioral sciences who are interested in performing advanced statistical analyses without having a sophisticated background in computer science and mathematics. Jonathon D. Brown is a social psychologist at the University of Washington. Since receiving his Ph.D. from UCLA in 1986, he has written three books, authored more than 75 journal articles and chapters, received a Presidential Young Investigator Award from the National Science Foundation, and been recognized as one of social psychology's most frequently-cited authors. . 
650 0 |a Statistics . 
650 0 |a Psychometrics. 
650 0 |a Psychology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-93549-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE03782 
919 |a 978-3-319-93549-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272431  |d 272431