Approximation Theory and Algorithms for Data Analysis

This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data ana...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Iske, Armin (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:Texts in Applied Mathematics, 68
Predmet:
ISBN:9783030052287
ISSN:0939-2475 ;
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
Popis jednotky:Mathematics and Statistics
Fyzický popis:X, 358 p. 34 illus., 15 illus. in color. online resource.
ISBN:9783030052287
ISSN:0939-2475 ;