Applied Multidimensional Scaling and Unfolding

This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Borg, Ingwer (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:2nd ed. 2018.
Schriftenreihe:SpringerBriefs in Statistics,
Schlagworte:
ISBN:9783319734712
ISSN:2191-544X
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618114917.0
007 cr nn 008mamaa
008 180516s2018 gw | s |||| 0|eng d
020 |a 9783319734712 
024 7 |a 10.1007/978-3-319-73471-2  |2 doi 
035 |a CVTIDW06899 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Borg, Ingwer.  |4 aut 
245 1 0 |a Applied Multidimensional Scaling and Unfolding  |h [electronic resource] /  |c by Ingwer Borg, Patrick J.F. Groenen, Patrick Mair. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a IX, 122 p. 65 illus.  |b online resource. 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
500 |a Mathematics and Statistics  
505 0 |a 1 First steps -- 2 The purpose of MDS and Unfolding -- 3 The fit of MDS and Unfolding solutions -- 4 Proximities -- 5 Variants of MDS models -- 6 Confirmatory MDS -- 7 Typical mistakes in MDS -- 8 Unfolding -- 9 MDS algorithms -- 10 MDS Software -- Subject Index. 
516 |a text file PDF 
520 |a This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfolding users tend to make. Further, it shows how MDS and unfolding can be used in practical research work, primarily by using the smacof package in the R environment but also Proxscal in SPSS. It is a valuable resource for psychologists, social scientists, and market researchers, with a basic understanding of multivariate statistics (such as multiple regression and factor analysis). 
650 0 |a Statistics . 
650 0 |a Psychometrics. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 0 |a Social sciences-Data processing. 
650 0 |a Social sciences-Computer programs. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-73471-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04179 
919 |a 978-3-319-73471-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272271  |d 272271