Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle

The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Berti, Massimiliano (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Lecture Notes of the Unione Matematica Italiana, 24
Schlagworte:
ISBN:9783319994864
ISSN:1862-9113 ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618114901.0
007 cr nn 008mamaa
008 181102s2018 gw | s |||| 0|eng d
020 |a 9783319994864 
024 7 |a 10.1007/978-3-319-99486-4  |2 doi 
035 |a CVTIDW06771 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Berti, Massimiliano.  |4 aut 
245 1 0 |a Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle  |h [electronic resource] /  |c by Massimiliano Berti, Jean-Marc Delort. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 269 p. 3 illus.  |b online resource. 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 24 
500 |a Mathematics and Statistics  
516 |a text file PDF 
520 |a The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure. In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations, we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions. 
650 0 |a Partial differential equations. 
650 0 |a Fourier analysis. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Functional analysis. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-99486-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE04051 
919 |a 978-3-319-99486-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 272222  |d 272222