Simulating Business Processes for Descriptive, Predictive, and Prescriptive Analytics /

This book outlines the benefits and limitations of simulation, what is involved in setting up a simulation capability in an organization, the steps involved in developing a simulation model and how to ensure that model results are implemented. In addition, detailed example applications are provided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Greasley, Andrew (VerfasserIn)
Format: E-Book
Sprache:Englisch
Veröffentlicht: Berlin ; Boston : De Gruyter, 2019
Schlagworte:
ISBN:9781547400690
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Frontmatter
  • Preface
  • Acknowledgments
  • About the Author
  • Contents
  • Chapter 1. Analytics and Simulation Basics
  • Chapter 2. Simulation and Business Processes
  • Chapter 3. Build the Conceptual Model
  • Chapter 4. Build the Simulation
  • Chapter 5. Use Simulation for Descriptive, Predictive and Prescriptive Analytics
  • Chapter 6. Case Study: A Simulation of a Police Call Center
  • Chapter 7. Case Study: A Simulation of a "Last Mile" Logistics System
  • Chapter 8. Case Study: A Simulation of an Enterprise Resource Planning System
  • Chapter 9. Case Study: A Simulation of a Snacks Process Production System
  • Chapter 10. Case Study: A Simulation of a Police Arrest Process
  • Chapter 11. Case Study: A Simulation of a Food Retail Distribution Network
  • Chapter 12. Case Study: A Simulation of a Proposed Textile Plant
  • Chapter 13. Case Study: A Simulation of a Road Traffic Accident Process
  • Chapter 14. Case Study: A Simulation of a Rail Carriage Maintenance Depot
  • Chapter 15. Case Study: A Simulation of a Rail Vehicle Bogie Production Facility
  • Chapter 16. Case Study: A Simulation of Advanced Service Provision
  • Chapter 17. Case Study: Generating Simulation Analytics with Process Mining
  • Chapter 18. Case Study: Using Simulation with Data Envelopment Analysis
  • Chapter 19. Case Study: Agent-Based Modeling in Discrete-Event Simulation
  • Appendix A
  • Appendix B
  • Index