Supervised Learning with Quantum Computers

Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at pr...

Full description

Saved in:
Bibliographic Details
Main Author: Schuld, Maria (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Quantum Science and Technology,
Subjects:
ISBN:9783319964249
ISSN:2364-9054
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618103244.0
007 cr nn 008mamaa
008 180830s2018 gw | s |||| 0|eng d
020 |a 9783319964249 
024 7 |a 10.1007/978-3-319-96424-9  |2 doi 
035 |a CVTIDW14430 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Schuld, Maria.  |4 aut 
245 1 0 |a Supervised Learning with Quantum Computers  |h [electronic resource] /  |c by Maria Schuld, Francesco Petruccione. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 287 p. 83 illus., 48 illus. in color.  |b online resource. 
490 1 |a Quantum Science and Technology,  |x 2364-9054 
500 |a Physics and Astronomy  
505 0 |a Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to build quantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References. 
516 |a text file PDF 
520 |a Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models'. A special focus lies on supervised learning, and applications for near-term quantum devices. 
650 0 |a Quantum physics. 
650 0 |a Quantum computers. 
650 0 |a Pattern recognition. 
650 0 |a Spintronics. 
650 0 |a Physics. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-96424-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11710 
919 |a 978-3-319-96424-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 244895  |d 244895