Structurally Unstable Quadratic Vector Fields of Codimension One
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc,...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cham :
Springer International Publishing,
2018.
|
| Vydání: | 1st ed. 2018. |
| Témata: | |
| ISBN: | 9783319921174 |
| On-line přístup: |
|
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618103243.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 180628s2018 gw | s |||| 0|eng d | ||
| 020 | |a 9783319921174 | ||
| 024 | 7 | |a 10.1007/978-3-319-92117-4 |2 doi | |
| 035 | |a CVTIDW14382 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Artés, Joan C. |4 aut | |
| 245 | 1 | 0 | |a Structurally Unstable Quadratic Vector Fields of Codimension One |h [electronic resource] / |c by Joan C. Artés, Jaume Llibre, Alex C. Rezende. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Cham : |b Springer International Publishing, |c 2018. | |
| 300 | |a VI, 267 p. 362 illus., 1 illus. in color. |b online resource. | ||
| 500 | |a Mathematics and Statistics | ||
| 505 | 0 | |a Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography. | |
| 516 | |a text file PDF | ||
| 520 | |a Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. . | ||
| 650 | 0 | |a Differential equations. | |
| 650 | 0 | |a Dynamics. | |
| 650 | 0 | |a Ergodic theory. | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-92117-4 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE11662 | ||
| 919 | |a 978-3-319-92117-4 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 244888 |d 244888 | ||

