Structurally Unstable Quadratic Vector Fields of Codimension One

Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc,...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Artés, Joan C. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9783319921174
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618103243.0
007 cr nn 008mamaa
008 180628s2018 gw | s |||| 0|eng d
020 |a 9783319921174 
024 7 |a 10.1007/978-3-319-92117-4  |2 doi 
035 |a CVTIDW14382 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Artés, Joan C.  |4 aut 
245 1 0 |a Structurally Unstable Quadratic Vector Fields of Codimension One  |h [electronic resource] /  |c by Joan C. Artés, Jaume Llibre, Alex C. Rezende. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VI, 267 p. 362 illus., 1 illus. in color.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Preliminary definitions -- Some preliminary tools -- A summary for the structurally stable quadratic vector fields -- Proof of Theorem 1.1(a) -- Proof of Theorem 1.1(b) -- Bibliography. 
516 |a text file PDF 
520 |a Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. . 
650 0 |a Differential equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-92117-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11662 
919 |a 978-3-319-92117-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 244888  |d 244888