Statistical Physics of Synchronization

This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of...

Full description

Saved in:
Bibliographic Details
Main Author: Gupta, Shamik (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:SpringerBriefs in Complexity,
Subjects:
ISBN:9783319966649
ISSN:2191-5326
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618103139.0
007 cr nn 008mamaa
008 180828s2018 gw | s |||| 0|eng d
020 |a 9783319966649 
024 7 |a 10.1007/978-3-319-96664-9  |2 doi 
035 |a CVTIDW14300 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Gupta, Shamik.  |4 aut 
245 1 0 |a Statistical Physics of Synchronization  |h [electronic resource] /  |c by Shamik Gupta, Alessandro Campa, Stefano Ruffo. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVI, 121 p. 32 illus., 27 illus. in color.  |b online resource. 
490 1 |a SpringerBriefs in Complexity,  |x 2191-5326 
500 |a Physics and Astronomy  
505 0 |a Synchronizing systems -- Introduction -- The oscillators and their interaction: A qualitative discussion -- Oscillators as limit cycles -- Interacting limit-cycle oscillators -- Synchronizing systems as statistical mechanical systems -- The features of a statistical physical description -- Some results for noiseless interacting oscillators -- The oscillators with inertia -- Appendix 1: A two-dimensional dynamics with a limit-cycle attractor -- Appendix 2: The Lyapunov exponents -- Appendix 3: The one-body distribution function in an N-body system -- Oscillators with first-order dynamics -- The oscillators with distributed natural frequencies -- The Kuramoto model -- Unimodal symmetric g(w) -- Nonunimodal g(w) -- Appendix 1: An H-theorem for a particular simple case -- Appendix 2: Form of the function r(K) for symmetric and unimodal frequency distributions in the Kuramoto model -- Appendix 3: The numerical solution of Eq. (2.34) -- Oscillators with second-order dynamics -- Generalized Kuramoto model with inertia and noise -- Nonequilibrium first-order synchronization phase transition: Simulation results -- Analysis in the continuum limit: The Kramers equation -- Phase diagram: Comparison with numeric -- Appendix 1: The noiseless Kuramoto model with inertia: Connection with electrical power distribution models -- Appendix 2: Proof that the dynamics (3.9) does not satisfy detailed balance -- Appendix 3: Simulation details for the dynamics (3.9) -- Appendix 4: Derivation of the Kramers equation -- Appendix 5: Nature of solutions of Eq. (3.32) -- Appendix 6: Solution of the system of equations (3.39) -- Appendix 7: Convergence properties of the expansion (3.38). 
516 |a text file PDF 
520 |a This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems. 
650 0 |a Statistical physics. 
650 0 |a Computational complexity. 
650 0 |a Mathematical physics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-96664-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11580 
919 |a 978-3-319-96664-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 244358  |d 244358