Semiparametric Regression with R

This easy-to-follow applied book expands upon the authors' prior work on semiparametric regression to include the use of R software. In 2003, authors Ruppert and Wand co-wrote Semiparametric Regression with R.J. Carroll, which introduced the techniques and benefits of semiparametric regression...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Harezlak, Jaroslaw (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: New York, NY : Springer New York , 2018.
Vydání:1st ed. 2018.
Edice:Use R!,
Témata:
ISBN:9781493988532
ISSN:2197-5736
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618103012.0
007 cr nn 008mamaa
008 181212s2018 xxu| s |||| 0|eng d
020 |a 9781493988532 
024 7 |a 10.1007/978-1-4939-8853-2  |2 doi 
035 |a CVTIDW13927 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Harezlak, Jaroslaw.  |4 aut 
245 1 0 |a Semiparametric Regression with R  |h [electronic resource] /  |c by Jaroslaw Harezlak, David Ruppert, Matt P. Wand. 
250 |a 1st ed. 2018. 
260 1 |a New York, NY :  |b Springer New York ,  |c 2018. 
300 |a XI, 331 p. 144 illus., 142 illus. in color.  |b online resource. 
490 1 |a Use R!,  |x 2197-5736 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Penalized Splines -- Generalized Additive Models -- Semiparametric Regression Analysis of Grouped Data -- Bivariate Function Extensions -- Selection of Additional Topics.-Index. 
516 |a text file PDF 
520 |a This easy-to-follow applied book expands upon the authors' prior work on semiparametric regression to include the use of R software. In 2003, authors Ruppert and Wand co-wrote Semiparametric Regression with R.J. Carroll, which introduced the techniques and benefits of semiparametric regression in a concise and user-friendly fashion. Fifteen years later, semiparametric regression is applied widely, powerful new methodology is continually being developed, and advances in the R computing environment make it easier than ever before to carry out analyses. Semiparametric Regression with R introduces the basic concepts of semiparametric regression with a focus on applications and R software. This volume features case studies from environmental, economic, financial, and other fields. The examples and corresponding code can be used or adapted to apply semiparametric regression to a wide range of problems. It contains more than fifty exercises, and the accompanying HRW package contains all datasets and scripts used in the book, as well as some useful R functions. This book is suitable as a textbook for advanced undergraduates and graduate students, as well as a guide for statistically-oriented practitioners, and could be used in conjunction with Semiparametric Regression. Readers are assumed to have a basic knowledge of R and some exposure to linear models. For the underpinning principles, calculus-based probability, statistics, and linear algebra are desirable. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4939-8853-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11207 
919 |a 978-1-4939-8853-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 243625  |d 243625