Shrinkage Estimation

This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properti...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Fourdrinier, Dominique (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Series in Statistics,
Témata:
ISBN:9783030021856
ISSN:0172-7397
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102914.0
007 cr nn 008mamaa
008 181127s2018 gw | s |||| 0|eng d
020 |a 9783030021856 
024 7 |a 10.1007/978-3-030-02185-6  |2 doi 
035 |a CVTIDW13991 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Fourdrinier, Dominique.  |4 aut 
245 1 0 |a Shrinkage Estimation  |h [electronic resource] /  |c by Dominique Fourdrinier, William E. Strawderman, Martin T. Wells. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 333 p. 1 illus.  |b online resource. 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Decision Theory Preliminaries -- Chapter 2. Estimation of a normal mean vector I -- Chapter 3. Estimation of a normal mean vector II -- Chapter 4. Spherically symmetric distributions -- Chapter 5. Estimation of a mean vector for spherically symmetric distributions I: known scale -- Chapter 6. Estimation of a mean vector for spherically symmetric distributions II: with a residual -- Chapter 7. Restricted Parameter Spaces -- Chapter 8. Loss and Confidence Level Estimation.-. 
516 |a text file PDF 
520 |a This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions. Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book. Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions. Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports. Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein's identity doesn't hold; Stein's lemma and Stokes' theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-02185-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11271 
919 |a 978-3-030-02185-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 243145  |d 243145