Volume Conjecture for Knots
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-mat...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | Elektronisch E-Book |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore :
Springer Singapore ,
2018.
|
| Ausgabe: | 1st ed. 2018. |
| Schriftenreihe: | SpringerBriefs in Mathematical Physics,
30 |
| Schlagworte: | |
| ISBN: | 9789811311505 |
| ISSN: | 2197-1757 ; |
| Online-Zugang: |
|
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- 1. Preliminaries (knots and links, braids, hyperbolic geometry)
- 2. R-matrix, the Kashaev invariant and the colored Jones polynomimal
- 3. Volume conjecture
- 4. Triangulation of a knot complement and hyperbolicity equation
- 5. Idea of the "proof"
- 6. Representations of a knot group into SL(2;C) and their Chern-Simons invariant
- 7. Generalization of the volume conjecture.

