Theory of Besov Spaces

This is a self-contained textbook of the theory of Besov spaces and Triebel-Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential opera...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Sawano, Yoshihiro (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:Developments in Mathematics, 56
Témata:
ISBN:9789811308369
ISSN:1389-2177 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102743.0
007 cr nn 008mamaa
008 181104s2018 si | s |||| 0|eng d
020 |a 9789811308369 
024 7 |a 10.1007/978-981-13-0836-9  |2 doi 
035 |a CVTIDW14706 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Sawano, Yoshihiro.  |4 aut 
245 1 0 |a Theory of Besov Spaces  |h [electronic resource] /  |c by Yoshihiro Sawano. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XXIII, 945 p. 12 illus.  |b online resource. 
490 1 |a Developments in Mathematics,  |x 1389-2177 ;  |v 56 
500 |a Mathematics and Statistics  
505 0 |a An introduction to Besov spaces -- Fundamental facts of harmonic analysis -- Besov space, TriebelLizorkinspaces -- Relation with other function spaces -- Theory of decomposition and its applications -- Applications to partial differential equations and the T1 theorem. 
516 |a text file PDF 
520 |a This is a self-contained textbook of the theory of Besov spaces and Triebel-Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel-Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis. Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, Lp spaces, the Hardy-Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces-Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces-are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel-Lizorkin spaces. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Functions of real variables. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-0836-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11986 
919 |a 978-981-13-0836-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 242367  |d 242367