Real Spinorial Groups A Short Mathematical Introduction /

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomat...

Full description

Saved in:
Bibliographic Details
Main Author: Xambó-Descamps, Sebastià (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:SpringerBriefs in Mathematics,
Subjects:
ISBN:9783030004040
ISSN:2191-8198
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102702.0
007 cr nn 008mamaa
008 181122s2018 gw | s |||| 0|eng d
020 |a 9783030004040 
024 7 |a 10.1007/978-3-030-00404-0  |2 doi 
035 |a CVTIDW13389 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Xambó-Descamps, Sebastià.  |4 aut 
245 1 0 |a Real Spinorial Groups  |h [electronic resource] :  |b A Short Mathematical Introduction /  |c by Sebastià Xambó-Descamps. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 151 p. 11 illus., 1 illus. in color.  |b online resource. 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1- Mathematical background -- Chapter 2- Grassmann algebra -- Chapter 3- Geometric Algebra -- Chapter 4- Orthogonal geometry with GA -- Chapter 5- Zooming in on rotor groups -- Chapter 6- Postfaces -- References. 
516 |a text file PDF 
520 |a This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students. 
650 0 |a Geometry. 
650 0 |a Group theory. 
650 0 |a Physics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-00404-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10669 
919 |a 978-3-030-00404-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 242024  |d 242024