Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations
The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically...
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore :
Springer Singapore ,
2018.
|
| Vydanie: | 1st ed. 2018. |
| Predmet: | |
| ISBN: | 9789811090042 |
| On-line prístup: |
|
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Obsah:
- Functionally fitted continuous finite element methods for oscillatory Hamiltonian system
- Exponential average-vector-field integrator for conservative or dissipative systems
- Exponential Fourier collocation methods for first-order differential Equations
- Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems
- High-order symplectic and symmetric composition integrators for multi-frequency oscillatory Hamiltonian systems
- The construction of arbitrary order ERKN integrators via group theory
- Trigonometric collocation methods for multi-frequency and multidimensional oscillatory systems
- A compact tri-colored tree theory for general ERKN methods
- An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein-Gordon equations
- An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations
- Arbitrarily high-order time-stepping schemes for nonlinear Klein-Gordon equations
- An essential extension of the finite-energy condition for ERKN integrators solving nonlinear wave equations
- Index.

