Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Wu, Xinyuan (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9789811090042
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102652.0
007 cr nn 008mamaa
008 180419s2018 si | s |||| 0|eng d
020 |a 9789811090042 
024 7 |a 10.1007/978-981-10-9004-2  |2 doi 
035 |a CVTIDW13430 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Wu, Xinyuan.  |4 aut 
245 1 0 |a Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations  |h [electronic resource] /  |c by Xinyuan Wu, Bin Wang. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a XV, 345 p. 73 illus., 62 illus. in color.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Functionally fitted continuous finite element methods for oscillatory Hamiltonian system -- Exponential average-vector-field integrator for conservative or dissipative systems -- Exponential Fourier collocation methods for first-order differential Equations -- Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems -- High-order symplectic and symmetric composition integrators for multi-frequency oscillatory Hamiltonian systems -- The construction of arbitrary order ERKN integrators via group theory -- Trigonometric collocation methods for multi-frequency and multidimensional oscillatory systems -- A compact tri-colored tree theory for general ERKN methods -- An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein-Gordon equations -- An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations -- Arbitrarily high-order time-stepping schemes for nonlinear Klein-Gordon equations -- An essential extension of the finite-energy condition for ERKN integrators solving nonlinear wave equations -- Index. 
516 |a text file PDF 
520 |a The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques. 
650 0 |a Algorithms. 
650 0 |a Computational complexity. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-10-9004-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10710 
919 |a 978-981-10-9004-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 241946  |d 241946