Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations

This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Efendiev, Messoud (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Fields Institute Monographs, 36
Témata:
ISBN:9783319984070
ISSN:1069-5273 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102628.0
007 cr nn 008mamaa
008 181017s2018 gw | s |||| 0|eng d
020 |a 9783319984070 
024 7 |a 10.1007/978-3-319-98407-0  |2 doi 
035 |a CVTIDW14538 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Efendiev, Messoud.  |4 aut 
245 1 0 |a Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations  |h [electronic resource] /  |c by Messoud Efendiev. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVII, 258 p. 3 illus.  |b online resource. 
490 1 |a Fields Institute Monographs,  |x 1069-5273 ;  |v 36 
500 |a Mathematics and Statistics  
505 0 |a Preface -- 1. Preliminaries -- 2. Trajectory dynamical systems and their attractors -- 3. Symmetry and attractors: the case N ≤ 3 -- 4. Symmetry and attractors: the case N ≤ 4 -- 5. Symmetry and attractors -- 6. Symmetry and attractors: arbitrary dimension -- 7. The case of p-Laplacian operator -- Bibliography. . 
516 |a text file PDF 
520 |a This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists. 
650 0 |a Partial differential equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-98407-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11818 
919 |a 978-3-319-98407-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 241746  |d 241746