Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations
This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cham :
Springer International Publishing,
2018.
|
| Vydání: | 1st ed. 2018. |
| Edice: | Fields Institute Monographs,
36 |
| Témata: | |
| ISBN: | 9783319984070 |
| ISSN: | 1069-5273 ; |
| On-line přístup: |
|
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618102628.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 181017s2018 gw | s |||| 0|eng d | ||
| 020 | |a 9783319984070 | ||
| 024 | 7 | |a 10.1007/978-3-319-98407-0 |2 doi | |
| 035 | |a CVTIDW14538 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Efendiev, Messoud. |4 aut | |
| 245 | 1 | 0 | |a Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations |h [electronic resource] / |c by Messoud Efendiev. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Cham : |b Springer International Publishing, |c 2018. | |
| 300 | |a XVII, 258 p. 3 illus. |b online resource. | ||
| 490 | 1 | |a Fields Institute Monographs, |x 1069-5273 ; |v 36 | |
| 500 | |a Mathematics and Statistics | ||
| 505 | 0 | |a Preface -- 1. Preliminaries -- 2. Trajectory dynamical systems and their attractors -- 3. Symmetry and attractors: the case N ≤ 3 -- 4. Symmetry and attractors: the case N ≤ 4 -- 5. Symmetry and attractors -- 6. Symmetry and attractors: arbitrary dimension -- 7. The case of p-Laplacian operator -- Bibliography. . | |
| 516 | |a text file PDF | ||
| 520 | |a This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists. | ||
| 650 | 0 | |a Partial differential equations. | |
| 650 | 0 | |a Dynamics. | |
| 650 | 0 | |a Ergodic theory. | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-98407-0 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE11818 | ||
| 919 | |a 978-3-319-98407-0 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 241746 |d 241746 | ||

