Studies in Neural Data Science StartUp Research 2017, Siena, Italy, June 25-27 /

This volume presents a collection of peer-reviewed contributions arising from StartUp Research: a stimulating research experience in which twenty-eight early-career researchers collaborated with seven senior international professors in order to develop novel statistical methods for complex brain ima...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Proceedings in Mathematics & Statistics, 257
Témata:
ISBN:9783030000394
ISSN:2194-1009 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102535.0
007 cr nn 008mamaa
008 181228s2018 gw | s |||| 0|eng d
020 |a 9783030000394 
024 7 |a 10.1007/978-3-030-00039-4  |2 doi 
035 |a CVTIDW14394 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Studies in Neural Data Science  |h [electronic resource] :  |b StartUp Research 2017, Siena, Italy, June 25-27 /  |c edited by Antonio Canale, Daniele Durante, Lucia Paci, Bruno Scarpa. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XI, 156 p. 62 illus., 26 illus. in color.  |b online resource. 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 257 
500 |a Mathematics and Statistics  
505 0 |a 1 S. Ranciati et al, Understanding Dependency Patterns in Structural and Functional Brain Connectivity through fMRI and DTI Data -- 2 E. Aliverti et al, Hierarchical Graphical Model for Learning Functional Network Determinants -- 3 A. Cabassi et al, Three Testing Perspectives on Connectome Data -- 4 A. Cappozzo et al, An Object Oriented Approach to Multimodal Imaging Data in Neuroscience -- 5 G. Bertarelli et al, Curve Clustering for Brain Functional Activity and Synchronization -- 6 F. Gasperoni and A. Luati, Robust Methods for Detecting Spontaneous Activations in fMRI Data -- 7 A. Caponera et al, Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data -- 8 M. Guindani and M. Vannucci, Challenges in the Analysis of Neuroscience Data. 
516 |a text file PDF 
520 |a This volume presents a collection of peer-reviewed contributions arising from StartUp Research: a stimulating research experience in which twenty-eight early-career researchers collaborated with seven senior international professors in order to develop novel statistical methods for complex brain imaging data. During this meeting, which was held on June 25-27, 2017 in Siena (Italy), the research groups focused on recent multimodality imaging datasets measuring brain function and structure, and proposed a wide variety of methods for network analysis, spatial inference, graphical modeling, multiple testing, dynamic inference, data fusion, tensor factorization, object-oriented analysis and others. The results of their studies are gathered here, along with a final contribution by Michele Guindani and Marina Vannucci that opens new research directions in this field. The book offers a valuable resource for all researchers in Data Science and Neuroscience who are interested in the promising intersections of these two fundamental disciplines. 
650 0 |a Statistics . 
650 0 |a Neurosciences. 
650 0 |a Biostatistics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-00039-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE11674 
919 |a 978-3-030-00039-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 241289  |d 241289