Proceedings of ELM-2016

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical st...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Proceedings in Adaptation, Learning and Optimization, 9
Témata:
ISBN:9783319574219
ISSN:2363-6084 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102505.0
007 cr nn 008mamaa
008 170525s2018 gw | s |||| 0|eng d
020 |a 9783319574219 
024 7 |a 10.1007/978-3-319-57421-9  |2 doi 
035 |a CVTIDW13065 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
245 1 0 |a Proceedings of ELM-2016  |h [electronic resource] /  |c edited by Jiuwen Cao, Erik Cambria, Amaury Lendasse, Yoan Miche, Chi Man Vong. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 285 p. 143 illus., 126 illus. in color.  |b online resource. 
490 1 |a Proceedings in Adaptation, Learning and Optimization,  |x 2363-6084 ;  |v 9 
500 |a Engineering  
516 |a text file PDF 
520 |a This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large‐scale computing and artificial intelligence. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-57421-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10345 
919 |a 978-3-319-57421-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 241033  |d 241033