Practical Mathematical Optimization Basic Optimization Theory and Gradient-Based Algorithms /

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimi...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Snyman, Jan A. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:2nd ed. 2018.
Edice:Springer Optimization and Its Applications, 133
Témata:
ISBN:9783319775869
ISSN:1931-6828 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102402.0
007 cr nn 008mamaa
008 180502s2018 gw | s |||| 0|eng d
020 |a 9783319775869 
024 7 |a 10.1007/978-3-319-77586-9  |2 doi 
035 |a CVTIDW12909 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Snyman, Jan A.  |4 aut 
245 1 0 |a Practical Mathematical Optimization  |h [electronic resource] :  |b Basic Optimization Theory and Gradient-Based Algorithms /  |c by Jan A Snyman, Daniel N Wilke. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXVI, 372 p. 81 illus., 17 illus. in color.  |b online resource. 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6828 ;  |v 133 
500 |a Mathematics and Statistics  
505 0 |a 1.Introduction -- 2.Line search descent methods for unconstrained minimization.-3. Standard methods for constrained optimization.-4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index. 
516 |a text file PDF 
520 |a This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills. . 
650 0 |a Mathematical optimization. 
650 0 |a Algorithms. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Numerical analysis. 
650 0 |a Computer software. 
650 0 |a Functions of real variables. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-77586-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10189 
919 |a 978-3-319-77586-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 240497  |d 240497