Positive Solutions to Indefinite Problems A Topological Approach /

This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Feltrin, Guglielmo (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Frontiers in Mathematics,
Témata:
ISBN:9783319942384
ISSN:1660-8046
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102401.0
007 cr nn 008mamaa
008 181123s2018 gw | s |||| 0|eng d
020 |a 9783319942384 
024 7 |a 10.1007/978-3-319-94238-4  |2 doi 
035 |a CVTIDW12837 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Feltrin, Guglielmo.  |4 aut 
245 1 0 |a Positive Solutions to Indefinite Problems  |h [electronic resource] :  |b A Topological Approach /  |c by Guglielmo Feltrin. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXIX, 304 p.  |b online resource. 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Part I - Superlinear indefinite problems -- Dirichlet boundary conditions -- More general nonlinearities f(t; s) -- Neumann and periodic conditions: existence results -- Neumann and periodic conditions: multiplicity results -- Subharmonic solutions and symbolic dynamics -- Part II - Super-sublinear indefinite problems -- Existence results -- High multiplicity results -- Subharmonic solutions and symbolic dynamics -- Part III - Appendices -- Leray-Schauder degree for locally compact operators -- Mawhin's coincidence degree -- Maximum principles and a change of variable -- Bibliography. 
516 |a text file PDF 
520 |a This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research can be obtained and presented in a penetrable way. In particular, the book focuses on second order nonlinear differential equations. It analyzes the Dirichlet, Neumann and periodic boundary value problems associated with the equation and provides existence, nonexistence and multiplicity results for positive solutions. The author proposes a new approach based on topological degree theory that allows him to answer some open questions and solve a conjecture about the dependence of the number of positive solutions on the nodal behaviour of the nonlinear term of the equation. The new technique developed in the book gives, as a byproduct, infinitely many subharmonic solutions and globally defined positive solutions with chaotic behaviour. Furthermore, some future directions for research, open questions and interesting, unexplored topics of investigation are proposed. 
650 0 |a Differential equations. 
650 0 |a Operator theory. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-94238-4  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10117 
919 |a 978-3-319-94238-4 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 240488  |d 240488