Practical Computer Vision Applications Using Deep Learning with CNNs With Detailed Examples in Python Using TensorFlow and Kivy /

Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Gad, Ahmed Fawzy (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berkeley, CA : Apress, 2018.
Vydání:1st ed. 2018.
Témata:
ISBN:9781484241677
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102230.0
007 cr nn 008mamaa
008 181205s2018 xxu| s |||| 0|eng d
020 |a 9781484241677 
024 7 |a 10.1007/978-1-4842-4167-7  |2 doi 
035 |a CVTIDW12890 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Gad, Ahmed Fawzy.  |4 aut 
245 1 0 |a Practical Computer Vision Applications Using Deep Learning with CNNs  |h [electronic resource] :  |b With Detailed Examples in Python Using TensorFlow and Kivy /  |c by Ahmed Fawzy Gad. 
250 |a 1st ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XXII, 405 p. 200 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a  1. Recognition in Computer Vision -- 2. Artificial Neural Network -- 3. Classification using ANN with Engineered Features -- 4. ANN Parameters Optimization -- 5. Convolutional Neural Networks -- 6. TensorFlow Recognition Application -- 7. Deploying Pre-Trained Models -- 8. Cross-Platform Data Science Applications.Appendix: Uploading Projects to PyPI. 
516 |a text file PDF 
520 |a Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than fully connected networks. You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition application and make the pre-trained models accessible over the Internet using Flask. Using Kivy and NumPy, you will create cross-platform data science applications with low overheads. This book will help you apply deep learning and computer vision concepts from scratch, step-by-step from conception to production. You will: Understand how ANNs and CNNs work Create computer vision applications and CNNs from scratch using Python Follow a deep learning project from conception to production using TensorFlow Use NumPy with Kivy to build cross-platform data science applications. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Open source software. 
650 0 |a Computer programming. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-4167-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10170 
919 |a 978-1-4842-4167-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239709  |d 239709