Transcriptome Analysis Introduction and Examples from the Neurosciences /

The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpre...

Full description

Saved in:
Bibliographic Details
Main Author: Cellerino, Alessandro (Author)
Format: Electronic eBook
Language:English
Published: Pisa : Scuola Normale Superiore, 2018.
Edition:1st ed. 2018.
Series:Lecture Notes (Scuola Normale Superiore) ; 17
Subjects:
ISBN:9788876426421
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102224.0
007 cr nn 008mamaa
008 180614s2018 it | s |||| 0|eng d
020 |a 9788876426421 
024 7 |a 10.1007/978-88-7642-642-1  |2 doi 
035 |a CVTIDW14867 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Cellerino, Alessandro.  |4 aut 
245 1 0 |a Transcriptome Analysis  |h [electronic resource] :  |b Introduction and Examples from the Neurosciences /  |c by Alessandro Cellerino, Michele Sanguanini. 
250 |a 1st ed. 2018. 
260 1 |a Pisa :  |b Scuola Normale Superiore,  |c 2018. 
300 |a XIV, 188 p.  |b online resource. 
490 1 |a Lecture Notes (Scuola Normale Superiore) ;  |v 17 
500 |a Mathematics and Statistics  
505 0 |a Preface -- Introduction: why study transcriptomics? -- 1. Data distribution and visualisation -- 2. Next-generation RNA sequencing -- 3. RNA-seq raw data processing -- 4. Differentially expressed gene detection & analysis -- 5. Unbiased clustering methods -- 6. Knowledge-based clustering methods -- 7. Network analysis -- 8. Mesoscale transcriptome analysis -- 9. Microscale transcriptome analysis -- Bibliography -- Index. 
516 |a text file PDF 
520 |a The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpretation of high-dimensional data is made difficult by the lack of a common language between experimental and data scientists. By combining theory with practical examples of how specific tools were used to obtain novel insights in biology, particularly in the neurosciences, the book intends to teach students how to design, analyse, and extract biological knowledge from transcriptome sequencing experiments. Undergraduate and graduate students in biomedical and quantitative sciences will benefit from this text as well as academics untrained in the subject. 
650 0 |a Biomathematics. 
650 0 |a Bioinformatics. 
650 0 |a Systems biology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-88-7642-642-1  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE12147 
919 |a 978-88-7642-642-1 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239660  |d 239660