Towards Analytical Techniques for Optimizing Knowledge Acquisition, Processing, Propagation, and Use in Cyberinfrastructure and Big Data

This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such me...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Lerma, L. Octavio (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Studies in Big Data, 29
Témata:
ISBN:9783319613499
ISSN:2197-6503 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102207.0
007 cr nn 008mamaa
008 170820s2018 gw | s |||| 0|eng d
020 |a 9783319613499 
024 7 |a 10.1007/978-3-319-61349-9  |2 doi 
035 |a CVTIDW14823 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Lerma, L. Octavio.  |4 aut 
245 1 0 |a Towards Analytical Techniques for Optimizing Knowledge Acquisition, Processing, Propagation, and Use in Cyberinfrastructure and Big Data  |h [electronic resource] /  |c by L. Octavio Lerma, Vladik Kreinovich. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 141 p.  |b online resource. 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 29 
500 |a Engineering  
505 0 |a Introduction -- Data Acquisition: Towards Optimal Use of Sensors -- Data and Knowledge Processing -- Knowledge Propagation and Resulting Knowledge Enhancement -- Knowledge Use -- Conclusions. 
516 |a text file PDF 
520 |a This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such methods stems from the fact that, when we have to decide where to place sensors, or which algorithm to use for processing the data-we mostly rely on experts' opinions. As a result, the selected knowledge-related methods are often far from ideal. To make better selections, it is necessary to first create easy-to-use models of knowledge-related processes. This is especially important for big data, where traditional numerical methods are unsuitable. The book offers a valuable guide for everyone interested in big data applications: students looking for an overview of related analytical techniques, practitioners interested in applying optimization techniques, and researchers seeking to improve and expand on these techniques. 
650 0 |a Computational intelligence. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-61349-9  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE12103 
919 |a 978-3-319-61349-9 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239488  |d 239488