Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mescher, Stephan (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Atlantis Studies in Dynamical Systems ; 6
Schlagworte:
ISBN:9783319765846
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102205.0
007 cr nn 008mamaa
008 180425s2018 gw | s |||| 0|eng d
020 |a 9783319765846 
024 7 |a 10.1007/978-3-319-76584-6  |2 doi 
035 |a CVTIDW12590 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Mescher, Stephan.  |4 aut 
245 1 0 |a Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology  |h [electronic resource] /  |c by Stephan Mescher. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXV, 171 p. 20 illus.  |b online resource. 
490 1 |a Atlantis Studies in Dynamical Systems ;  |v 6 
500 |a Mathematics and Statistics  
505 0 |a 1. Basics on Morse homology -- 2. Perturbations of gradient flow trajectories -- 3. Nonlocal generalizations -- 4. Moduli spaces of perturbed Morse ribbon trees -- 5. The convergence behaviour of sequences of perturbed Morse ribbon trees -- 6. Higher order multiplications and the A∞-relations -- 7. A∞-bimodule structures on Morse chain complexes -- A. Orientations and sign computations for perturbed Morse ribbon trees. 
516 |a text file PDF 
520 |a This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Complex manifolds. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-76584-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09870 
919 |a 978-3-319-76584-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239464  |d 239464