Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition...
Saved in:
| Main Author: | |
|---|---|
| Format: | Electronic eBook |
| Language: | English |
| Published: |
Cham :
Springer International Publishing,
2018.
|
| Edition: | 1st ed. 2018. |
| Series: | Atlantis Studies in Dynamical Systems ;
6 |
| Subjects: | |
| ISBN: | 9783319765846 |
| Online Access: |
|
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory. |
|---|---|
| Item Description: | Mathematics and Statistics |
| Physical Description: | XXV, 171 p. 20 illus. online resource. |
| ISBN: | 9783319765846 |

