Real and Complex Analysis Volume 1 /

This is the first volume of the two-volume book on real and complex analysis. This volume is an introduction to measure theory and Lebesgue measure where the Riesz representation theorem is used to construct Lebesgue measure. Intended for undergraduate students of mathematics and engineering, it cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sinha, Rajnikant (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Singapore : Springer Singapore , 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9789811309380
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102202.0
007 cr nn 008mamaa
008 181104s2018 si | s |||| 0|eng d
020 |a 9789811309380 
024 7 |a 10.1007/978-981-13-0938-0  |2 doi 
035 |a CVTIDW13386 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Sinha, Rajnikant.  |4 aut 
245 1 0 |a Real and Complex Analysis  |h [electronic resource] :  |b Volume 1 /  |c by Rajnikant Sinha. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a IX, 637 p.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Lebesgue Integration -- Chapter 2. Lp-Spaces -- Chapter 3. Fourier Transforms -- Chapter 4. Holomorphic and Harmonic Functions -- Chapter 5. Conformal Mapping -- Chapter 6. Analytic Continuation -- Chapter 7. Special Functions. 
516 |a text file PDF 
520 |a This is the first volume of the two-volume book on real and complex analysis. This volume is an introduction to measure theory and Lebesgue measure where the Riesz representation theorem is used to construct Lebesgue measure. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into three chapters, it discusses exponential and measurable functions, Riesz representation theorem, Borel and Lebesgue measure, -spaces, Riesz-Fischer theorem, Vitali-Caratheodory theorem, the Fubini theorem, and Fourier transforms. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which are the work of great mathematicians of the 19th and 20th centuries. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-13-0938-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10666 
919 |a 978-981-13-0938-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239444  |d 239444