Python Data Analytics With Pandas, NumPy, and Matplotlib /

Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Nelli, Fabio (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Berkeley, CA : Apress, 2018.
Vydání:2nd ed. 2018.
Témata:
ISBN:9781484239131
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618102052.0
007 cr nn 008mamaa
008 180927s2018 xxu| s |||| 0|eng d
020 |a 9781484239131 
024 7 |a 10.1007/978-1-4842-3913-1  |2 doi 
035 |a CVTIDW13261 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Nelli, Fabio.  |4 aut 
245 1 0 |a Python Data Analytics  |h [electronic resource] :  |b With Pandas, NumPy, and Matplotlib /  |c by Fabio Nelli. 
250 |a 2nd ed. 2018. 
260 1 |a Berkeley, CA :  |b Apress,  |c 2018. 
300 |a XIX, 569 p. 648 illus.  |b online resource. 
500 |a Professional and Applied Computing  
505 0 |a 1. An Introduction to Data Analysis -- 2. Introduction to the Python's World -- 3. The NumPy Library -- 4. The pandas Library-- An Introduction -- 5. pandas: Reading and Writing Data -- 6. pandas in Depth: Data Manipulation -- 7. Data Visualization with matplotlib -- 8. Machine Learning with scikit-learn -- 9. Deep Learning with TensorFlow -- 10. An Example - Meteorological Data -- 11. Embedding the JavaScript D3 Library in IPython Notebook -- 12. Recognizing Handwritten Digits -- 13. Textual data Analysis with NLTK -- 14. Image Analysis and Computer Vision with OpenCV -- Appendix A -- Appendix B. 
516 |a text file PDF 
520 |a Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
650 0 |a Artificial intelligence. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-1-4842-3913-1  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10541 
919 |a 978-1-4842-3913-1 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 239050  |d 239050