Number Fields

Requiring no more than a basic knowledge of abstract algebra, this textbook presents the basics of algebraic number theory in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights key arguments. There are several...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Marcus, Daniel A. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:2nd ed. 2018.
Edícia:Universitext,
Predmet:
ISBN:9783319902333
ISSN:0172-5939
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101931.0
007 cr nn 008mamaa
008 180705s2018 gw | s |||| 0|eng d
020 |a 9783319902333 
024 7 |a 10.1007/978-3-319-90233-3  |2 doi 
035 |a CVTIDW12223 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Marcus, Daniel A.  |4 aut 
245 1 0 |a Number Fields  |h [electronic resource] /  |c by Daniel A. Marcus. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XVIII, 203 p.  |b online resource. 
490 1 |a Universitext,  |x 0172-5939 
500 |a Mathematics and Statistics  
505 0 |a 1: A Special Case of Fermat's Conjecture -- 2: Number Fields and Number Rings -- 3: Prime Decomposition in Number Rings -- 4: Galois Theory Applied to Prime Decomposition -- 5: The Ideal Class Group and the Unit Group -- 6: The Distribution of Ideals in a Number Ring -- 7: The Dedekind Zeta Function and the Class Number Formula -- 8: The Distribution of Primes and an Introduction to Class Field Theory -- Appendix A: Commutative Rings and Ideals -- Appendix B: Galois Theory for Subfields of C -- Appendix C: Finite Fields and Rings -- Appendix D: Two Pages of Primes -- Further Reading -- Index of Theorems -- List of Symbols. 
516 |a text file PDF 
520 |a Requiring no more than a basic knowledge of abstract algebra, this textbook presents the basics of algebraic number theory in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights key arguments. There are several hundred exercises, providing a wealth of both computational and theoretical practice, as well as appendices summarizing the necessary background in algebra. Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject. From the reviews: "A thoroughly delightful introduction to algebraic number theory" - Ezra Brown in the Mathematical Reviews "An excellent basis for an introductory graduate course in algebraic number theory" - Harold Edwards in the Bulletin of the American Mathematical Society. 
650 0 |a Number theory. 
650 0 |a Algebra. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-90233-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09503 
919 |a 978-3-319-90233-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238783  |d 238783