Qualitative Theory of Volterra Difference Equations

This book provides a comprehensive and systematic approach to the study of the qualitative theory of boundedness, periodicity, and stability of Volterra difference equations. The book bridges together the theoretical aspects of Volterra difference equations with its applications to population dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Raffoul, Youssef N. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9783319971902
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101925.0
007 cr nn 008mamaa
008 180912s2018 gw | s |||| 0|eng d
020 |a 9783319971902 
024 7 |a 10.1007/978-3-319-97190-2  |2 doi 
035 |a CVTIDW13272 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Raffoul, Youssef N.  |4 aut 
245 1 0 |a Qualitative Theory of Volterra Difference Equations  |h [electronic resource] /  |c by Youssef N. Raffoul. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 324 p. 4 illus. in color.  |b online resource. 
500 |a Mathematics and Statistics  
505 0 |a Stability and Boundedness -- Functional Difference Equations -- Fixed Point Theory in Stability and Boundedness -- Periodic Solutions -- Population Dynamics -- Exponential and lp-Stability in Volterra Equations. 
516 |a text file PDF 
520 |a This book provides a comprehensive and systematic approach to the study of the qualitative theory of boundedness, periodicity, and stability of Volterra difference equations. The book bridges together the theoretical aspects of Volterra difference equations with its applications to population dynamics. Applications to real-world problems and open-ended problems are included throughout. This book will be of use as a primary reference to researchers and graduate students who are interested in the study of boundedness of solutions, the stability of the zero solution, or in the existence of periodic solutions using Lyapunov functionals and the notion of fixed point theory. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Biomathematics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-97190-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10552 
919 |a 978-3-319-97190-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238763  |d 238763