Optimal Control of PDEs under Uncertainty An Introduction with Application to Optimal Shape Design of Structures /

This book provides a direct and comprehensive introduction to theoretical and numerical concepts in the emerging field of optimal control of partial differential equations (PDEs) under uncertainty. The main objective of the book is to offer graduate students and researchers a smooth transition from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Martínez-Frutos, Jesús (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:SpringerBriefs in Mathematics,
Schlagworte:
ISBN:9783319982106
ISSN:2191-8198
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101915.0
007 cr nn 008mamaa
008 180830s2018 gw | s |||| 0|eng d
020 |a 9783319982106 
024 7 |a 10.1007/978-3-319-98210-6  |2 doi 
035 |a CVTIDW12344 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Martínez-Frutos, Jesús.  |4 aut 
245 1 0 |a Optimal Control of PDEs under Uncertainty  |h [electronic resource] :  |b An Introduction with Application to Optimal Shape Design of Structures /  |c by Jesús Martínez-Frutos, Francisco Periago Esparza. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIX, 123 p. 45 illus., 37 illus. in color.  |b online resource. 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
500 |a Mathematics and Statistics  
505 0 |a 1 Introduction -- 2 Mathematical Preliminaires -- 3 Mathematical Analysis of Optimal Control Problems Under Uncertainty -- 4 Numerical Resolution of Robust Optimal Control Problems -- 5 Numerical Resolution of Risk Averse Optimal Control Problems -- 6 Structural Optimization Under Uncertainty -- 7 Miscellaneous Topics and Open Problems. 
516 |a text file PDF 
520 |a This book provides a direct and comprehensive introduction to theoretical and numerical concepts in the emerging field of optimal control of partial differential equations (PDEs) under uncertainty. The main objective of the book is to offer graduate students and researchers a smooth transition from optimal control of deterministic PDEs to optimal control of random PDEs. Coverage includes uncertainty modelling in control problems, variational formulation of PDEs with random inputs, robust and risk-averse formulations of optimal control problems, existence theory and numerical resolution methods. The exposition focusses on the entire path, starting from uncertainty modelling and ending in the practical implementation of numerical schemes for the numerical approximation of the considered problems. To this end, a selected number of illustrative examples are analysed in detail throughout the book. Computer codes, written in MatLab, are provided for all these examples. This book is adressed to graduate students and researches in Engineering, Physics and Mathematics who are interested in optimal control and optimal design for random partial differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-98210-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09624 
919 |a 978-3-319-98210-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238729  |d 238729