Recent Advances in Ensembles for Feature Selection

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and eval...

Full description

Saved in:
Bibliographic Details
Main Author: Bolón-Canedo, Verónica (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Intelligent Systems Reference Library, 147
Subjects:
ISBN:9783319900803
ISSN:1868-4394 ;
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101911.0
007 cr nn 008mamaa
008 180430s2018 gw | s |||| 0|eng d
020 |a 9783319900803 
024 7 |a 10.1007/978-3-319-90080-3  |2 doi 
035 |a CVTIDW13409 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Bolón-Canedo, Verónica.  |4 aut 
245 1 0 |a Recent Advances in Ensembles for Feature Selection  |h [electronic resource] /  |c by Verónica Bolón-Canedo, Amparo Alonso-Betanzos. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 205 p. 39 illus., 36 illus. in color.  |b online resource. 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 147 
500 |a Engineering  
505 0 |a Basic concepts -- Feature selection -- Foundations of ensemble learning -- Ensembles for feature selection -- Combination of outputs -- Evaluation of ensembles for feature selection -- Other ensemble approaches -- Applications of ensembles versus traditional approaches: experimental results -- Software tools -- Emerging Challenges. . 
516 |a text file PDF 
520 |a This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining. . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-90080-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10689 
919 |a 978-3-319-90080-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238718  |d 238718