Recent Advances in Ensembles for Feature Selection

This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and eval...

Full description

Saved in:
Bibliographic Details
Main Author: Bolón-Canedo, Verónica (Author)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing, 2018.
Edition:1st ed. 2018.
Series:Intelligent Systems Reference Library, 147
Subjects:
ISBN:9783319900803
ISSN:1868-4394 ;
Online Access: Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining. .
Item Description:Engineering
Physical Description:XIV, 205 p. 39 illus., 36 illus. in color. online resource.
ISBN:9783319900803
ISSN:1868-4394 ;