New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension

In this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic....

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Melin, Patricia (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:SpringerBriefs in Computational Intelligence,
Predmet:
ISBN:9783319611495
ISSN:2625-3704
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101834.0
007 cr nn 008mamaa
008 170704s2018 gw | s |||| 0|eng d
020 |a 9783319611495 
024 7 |a 10.1007/978-3-319-61149-5  |2 doi 
035 |a CVTIDW12106 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Melin, Patricia.  |4 aut 
245 1 0 |a New Hybrid Intelligent Systems for Diagnosis and Risk Evaluation of Arterial Hypertension  |h [electronic resource] /  |c by Patricia Melin, German Prado-Arechiga. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 88 p. 48 illus., 47 illus. in color.  |b online resource. 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
500 |a Engineering  
505 0 |a From the Content: Introduction -- Fuzzy Logic for Arterial Hypertension Classification -- Design of a Neuro Design of a Neuro Design of Arterial Hypertension. 
516 |a text file PDF 
520 |a In this book, a new approach for diagnosis and risk evaluation of ar-terial hypertension is introduced. The new approach was implement-ed as a hybrid intelligent system combining modular neural net-works and fuzzy systems. The different responses of the hybrid system are combined using fuzzy logic. Finally, two genetic algo-rithms are used to perform the optimization of the modular neural networks parameters and fuzzy inference system parameters. The experimental results obtained using the proposed method on real pa-tient data show that when the optimization is used, the results can be better than without optimization. This book is intended to be a refer-ence for scientists and physicians interested in applying soft compu-ting techniques, such as neural networks, fuzzy logic and genetic algorithms, in medical diagnosis, but also in general to classification and pattern recognition and similar problems. 
650 0 |a Computational intelligence. 
650 0 |a Biomedical engineering. 
650 0 |a Health informatics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-61149-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09386 
919 |a 978-3-319-61149-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238549  |d 238549