Non-Local Partial Differential Equations for Engineering and Biology Mathematical Modeling and Analysis /

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review a...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Kavallaris, Nikos I. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Mathematics for Industry, 31
Témata:
ISBN:9783319679440
ISSN:2198-350X ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101808.0
007 cr nn 008mamaa
008 171128s2018 gw | s |||| 0|eng d
020 |a 9783319679440 
024 7 |a 10.1007/978-3-319-67944-0  |2 doi 
035 |a CVTIDW12188 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Kavallaris, Nikos I.  |4 aut 
245 1 0 |a Non-Local Partial Differential Equations for Engineering and Biology  |h [electronic resource] :  |b Mathematical Modeling and Analysis /  |c by Nikos I. Kavallaris, Takashi Suzuki. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIX, 300 p. 23 illus., 7 illus. in color.  |b online resource. 
490 1 |a Mathematics for Industry,  |x 2198-350X ;  |v 31 
500 |a Engineering  
505 0 |a Dedication -- Preface -- Acknowledgements -- Part I Applications in Engineering -- Micro-electro-mechanical-systems(MEMS) -- Ohmic Heating Phenomena -- Linear Friction Welding -- Resistance Spot Welding -- Part II Applications in Biology -- Gierer-Meinhardt System -- A Non-local Model Illustrating Replicator Dynamics -- A Non-local Model Arising in Chemotaxis -- A Non-local Reaction-Diffusion System Illustrating Cell Dynamics -- Appendices -- Index. 
516 |a text file PDF 
520 |a This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Mathematical physics. 
650 0 |a Bioinformatics . 
650 0 |a Computational biology . 
650 0 |a Partial differential equations. 
650 0 |a Chemical engineering. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-67944-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09468 
919 |a 978-3-319-67944-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238398  |d 238398