Quantum Groups and Noncommutative Geometry

This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Manin, Yuri I. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:2nd ed. 2018.
Edice:CRM Short Courses,
Témata:
ISBN:9783319979878
ISSN:2522-5200
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101726.0
007 cr nn 008mamaa
008 181011s2018 gw | s |||| 0|eng d
020 |a 9783319979878 
024 7 |a 10.1007/978-3-319-97987-8  |2 doi 
035 |a CVTIDW13299 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Manin, Yuri I.  |4 aut 
245 1 0 |a Quantum Groups and Noncommutative Geometry  |h [electronic resource] /  |c by Yuri I. Manin. 
250 |a 2nd ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VIII, 125 p. 83 illus., 1 illus. in color.  |b online resource. 
490 1 |a CRM Short Courses,  |x 2522-5200 
500 |a Mathematics and Statistics  
505 0 |a 1. The Quantum Group GL(2) -- 2. Bialgebras and Hopf Algebras -- 3. Quadratic Algebras as Quantum Linear Spaces -- 4. Quantum Matrix Spaces. I. Categorical Viewpoint -- 5. Quantum Matrix Spaces. II. Coordinate Approach -- 6. Adding Missing Relations -- 7. From Semigroups to Groups -- 8. Frobenius Algebras and the Quantum Determinant -- 9. Koszul Complexes and the Growth Rate of Quadratic Algebras -- 10. Hopf *-Algebras and Compact Matrix Pseudogroups -- 11. Yang-Baxter Equations -- 12. Algebras in Tensor Categories and Yang-Baxter Functors -- 13. Some Open Problems -- 14. The Tannaka-Krein Formalism and (Re)Presentations of Universal Quantum Groups -- Bibliography -- Index. 
516 |a text file PDF 
520 |a This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka-Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-97987-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10579 
919 |a 978-3-319-97987-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238190  |d 238190