On the Learnability of Physically Unclonable Functions

This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ganji, Fatemeh (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:T-Labs Series in Telecommunication Services,
Schlagworte:
ISBN:9783319767178
ISSN:2192-2810
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101703.0
007 cr nn 008mamaa
008 180324s2018 gw | s |||| 0|eng d
020 |a 9783319767178 
024 7 |a 10.1007/978-3-319-76717-8  |2 doi 
035 |a CVTIDW12288 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Ganji, Fatemeh.  |4 aut 
245 1 0 |a On the Learnability of Physically Unclonable Functions  |h [electronic resource] /  |c by Fatemeh Ganji. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXIV, 86 p. 21 illus., 4 illus. in color.  |b online resource. 
490 1 |a T-Labs Series in Telecommunication Services,  |x 2192-2810 
500 |a Engineering  
505 0 |a Introduction -- Definitions and Preliminaries -- PAC Learning of Arbiter PUFs -- PAC Learning of XOR Arbiter PUFs -- PAC Learning of Ring Oscillator PUFs -- PAC Learning of Bistable Ring PUFs -- Follow-up -- Conclusion. 
516 |a text file PDF 
520 |a This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve this goal, it develops a generic framework for the assessment of these PUFs based on two main approaches. First, with regard to the inherent physical characteristics, it establishes fit-for-purpose mathematical representations of the PUFs mentioned above, which adequately reflect the physical behavior of these primitives. To this end, notions and formalizations that are already familiar to the ML theory world are reintroduced in order to give a better understanding of why, how, and to what extent ML attacks against PUFs can be feasible in practice. Second, the book explores polynomial time ML algorithms, which can learn the PUFs under the appropriate representation. More importantly, in contrast to previous ML approaches, the framework presented here ensures not only the accuracy of the model mimicking the behavior of the PUF, but also the delivery of such a model. Besides off-the-shelf ML algorithms, the book applies a set of algorithms hailing from the field of property testing, which can help to evaluate the security of PUFs. They serve as a "toolbox", from which PUF designers and manufacturers can choose the indicators most relevant for their requirements. Last but not least, on the basis of learning theory concepts, the book explicitly states that the PUF families cannot be considered as an ultimate solution to the problem of insecure ICs. As such, it provides essential insights into both academic research on and the design and manufacturing of PUFs. 
650 0 |a Computational intelligence. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Computer science-Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Electronic circuits. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-76717-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09568 
919 |a 978-3-319-76717-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238095  |d 238095