Modern Algorithms of Cluster Analysis

This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the relat...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Wierzchoń, Slawomir (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:English
Vydavateľské údaje: Cham : Springer International Publishing, 2018.
Vydanie:1st ed. 2018.
Edícia:Studies in Big Data, 34
Predmet:
ISBN:9783319693088
ISSN:2197-6503 ;
On-line prístup: Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101643.0
007 cr nn 008mamaa
008 171229s2018 gw | s |||| 0|eng d
020 |a 9783319693088 
024 7 |a 10.1007/978-3-319-69308-8  |2 doi 
035 |a CVTIDW11741 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Wierzchoń, Slawomir.  |4 aut 
245 1 0 |a Modern Algorithms of Cluster Analysis  |h [electronic resource] /  |c by Slawomir Wierzchoń, Mieczyslaw Kłopotek. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XX, 421 p. 51 illus.  |b online resource. 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 34 
500 |a Engineering  
516 |a text file PDF 
520 |a This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem. Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented. In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection. 
650 0 |a Computational intelligence. 
650 0 |a Big data. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-69308-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09021 
919 |a 978-3-319-69308-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 238022  |d 238022