A Parametric Approach to Nonparametric Statistics

This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Alvo, Mayer (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Springer Series in the Data Sciences,
Schlagworte:
ISBN:9783319941530
ISSN:2365-5674
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101627.0
007 cr nn 008mamaa
008 181012s2018 gw | s |||| 0|eng d
020 |a 9783319941530 
024 7 |a 10.1007/978-3-319-94153-0  |2 doi 
035 |a CVTIDW12473 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Alvo, Mayer.  |4 aut 
245 1 2 |a A Parametric Approach to Nonparametric Statistics  |h [electronic resource] /  |c by Mayer Alvo, Philip L. H. Yu. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 279 p. 15 illus. in color.  |b online resource. 
490 1 |a Springer Series in the Data Sciences,  |x 2365-5674 
500 |a Mathematics and Statistics  
505 0 |a I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets. 
516 |a text file PDF 
520 |a This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-94153-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09753 
919 |a 978-3-319-94153-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237945  |d 237945