Rank and Pseudo-Rank Procedures for Independent Observations in Factorial Designs Using R and SAS /

This book explains how to analyze independent data from factorial designs without having to make restrictive assumptions, such as normality of the data, or equal variances. The general approach also allows for ordinal and even dichotomous data. The underlying effect size is the nonparametric relativ...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Brunner, Edgar (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Series in Statistics,
Témata:
ISBN:9783030029142
ISSN:0172-7397
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101512.0
007 cr nn 008mamaa
008 190715s2018 gw | s |||| 0|eng d
020 |a 9783030029142 
024 7 |a 10.1007/978-3-030-02914-2  |2 doi 
035 |a CVTIDW13356 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Brunner, Edgar.  |4 aut 
245 1 0 |a Rank and Pseudo-Rank Procedures for Independent Observations in Factorial Designs   |h [electronic resource] :  |b Using R and SAS /  |c by Edgar Brunner, Arne C. Bathke, Frank Konietschke. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XX, 521 p. 30 illus., 4 illus. in color.  |b online resource. 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
500 |a Mathematics and Statistics  
505 0 |a 1 Types of Data and Designs -- 2 Distributions and Effects -- 3 Two Samples -- 4 Several Samples -- 5 Two-Factor Crossed Designs -- 6 Designs with Three and More Factors -- 7 Derivation of Main Results -- 8 Mathematical Techniques -- References -- A Software and Program Code -- B Data Sets and Descriptions -- Index. . 
516 |a text file PDF 
520 |a This book explains how to analyze independent data from factorial designs without having to make restrictive assumptions, such as normality of the data, or equal variances. The general approach also allows for ordinal and even dichotomous data. The underlying effect size is the nonparametric relative effect, which has a simple and intuitive probability interpretation. The data analysis is presented as comprehensively as possible, including appropriate descriptive statistics which follow a nonparametric paradigm, as well as corresponding inferential methods using hypothesis tests and confidence intervals based on pseudo-ranks. Offering clear explanations, an overview of the modern rank- and pseudo-rank-based inference methodology and numerous illustrations with real data examples, as well as the necessary R/SAS code to run the statistical analyses, this book is a valuable resource for statisticians and practitioners alike. . 
650 0 |a Statistics . 
650 0 |a Biostatistics. 
650 0 |a Pharmaceutical technology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-030-02914-2  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10636 
919 |a 978-3-030-02914-2 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237606  |d 237606