Pseudodifferential Methods in Number Theory

Classically developed as a tool for partial differential equations, the analysis of operators known as pseudodifferential analysis is here regarded as a possible help in questions of arithmetic. The operators which make up the main subject of the book can be characterized in terms of congruence arit...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Unterberger, André (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Pseudo-Differential Operators, Theory and Applications, 13
Témata:
ISBN:9783319927077
ISSN:2297-0355 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101446.0
007 cr nn 008mamaa
008 180716s2018 gw | s |||| 0|eng d
020 |a 9783319927077 
024 7 |a 10.1007/978-3-319-92707-7  |2 doi 
035 |a CVTIDW13212 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Unterberger, André.  |4 aut 
245 1 0 |a Pseudodifferential Methods in Number Theory  |h [electronic resource] /  |c by André Unterberger. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a VI, 173 p.  |b online resource. 
490 1 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0355 ;  |v 13 
500 |a Mathematics and Statistics  
505 0 |a Introduction - The basic tools -- Some measures and distributions in the plane -- Pseudodifferential arithmetic and Euler decompositions -- The role of modular forms -- Line measures and modular distributions -- Arithmetic and the Fuchs calculus -- A possible approach to the Riemann hypothesis? 
516 |a text file PDF 
520 |a Classically developed as a tool for partial differential equations, the analysis of operators known as pseudodifferential analysis is here regarded as a possible help in questions of arithmetic. The operators which make up the main subject of the book can be characterized in terms of congruence arithmetic. They enjoy a Eulerian structure, and are applied to the search for new conditions equivalent to the Riemann hypothesis. These consist in the validity of certain parameter-dependent estimates for a class of Hermitian forms of finite rank. The Littlewood criterion, involving sums of Möbius coeffcients, and the Weil so-called explicit formula, which leads to his positivity criterion, fit within this scheme, using in the first case Weyl's pseudodifferential calculus, in the second case Fuchs'. The book should be of interest to people looking for new possible approaches to the Riemann hypothesis, also to new perspectives on pseudodifferential analysis and on the way it combines with modular form theory. Analysts will have no diffculty with the arithmetic aspects, with which, save for very few exceptions, no previous acquaintance is necessary. 
650 0 |a Number theory. 
650 0 |a Partial differential equations. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-92707-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE10492 
919 |a 978-3-319-92707-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237499  |d 237499