Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics

This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Mano, Shuhei (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Tokyo : Springer Japan , 2018.
Vydání:1st ed. 2018.
Edice:JSS Research Series in Statistics,
Témata:
ISBN:9784431558880
ISSN:2364-0057
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101408.0
007 cr nn 008mamaa
008 180712s2018 ja | s |||| 0|eng d
020 |a 9784431558880 
024 7 |a 10.1007/978-4-431-55888-0  |2 doi 
035 |a CVTIDW12492 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Mano, Shuhei.  |4 aut 
245 1 0 |a Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics  |h [electronic resource] /  |c by Shuhei Mano. 
250 |a 1st ed. 2018. 
260 1 |a Tokyo :  |b Springer Japan ,  |c 2018. 
300 |a VIII, 135 p. 9 illus.  |b online resource. 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
500 |a Mathematics and Statistics  
516 |a text file PDF 
520 |a This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-4-431-55888-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE09772 
919 |a 978-4-431-55888-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237335  |d 237335