Mathematical Physics: Classical Mechanics

As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Knauf, Andreas (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg : Springer Berlin Heidelberg , 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:La Matematica per il 3+2, 109
Schlagworte:
ISBN:9783662557747
ISSN:2038-5722 ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101355.0
007 cr nn 008mamaa
008 180224s2018 gw | s |||| 0|eng d
020 |a 9783662557747 
024 7 |a 10.1007/978-3-662-55774-7  |2 doi 
035 |a CVTIDW11453 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Knauf, Andreas.  |4 aut 
245 1 0 |a Mathematical Physics: Classical Mechanics  |h [electronic resource] /  |c by Andreas Knauf. 
250 |a 1st ed. 2018. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg ,  |c 2018. 
300 |a XIV, 683 p. 92 illus., 53 illus. in color.  |b online resource. 
490 1 |a La Matematica per il 3+2,  |x 2038-5722 ;  |v 109 
500 |a Mathematics and Statistics  
505 0 |a Remarks on Mathematial Physics -- 1 Introduction -- 2 Dynamical Systems -- 3 Ordinary Differential Equations -- 4 Linear Dynamics -- 5 Classification of Linear Flows -- 6 Hamiltonian Equations and Symplectic Group -- 7 Stability Theory -- 8 Variational Principles -- 9 Ergodic Theory -- 10 Symplectic Geometry -- 11 Motion in a Potential -- 12 Scattering Theory -- 13 Integrable Systems and Symmetries -- 14 Rigid and Non-Rigid Bodies -- 15 Perturbation Theory -- 16 Relativistic Mechanics -- 17 Symplectic Topology -- A Topological Spaces and Manifolds -- B Differential Forms -- C Convexity and Legendre Transform -- D Fixed Point Theorems, and Results about Inverse Images -- E Group Theory -- F Bundles, Connection, Curvature -- G Morse Theory -- H Solutions of the Exercises -- Bibiography -- Index of Proper Names -- Table of Symbols -- Image Credits -- Index. 
516 |a text file PDF 
520 |a As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view. 
650 0 |a Mathematical physics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-662-55774-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08733 
919 |a 978-3-662-55774-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237276  |d 237276