Longitudinal Data Analysis Autoregressive Linear Mixed Effects Models /

This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Funatogawa, Ikuko (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Singapore : Springer Singapore , 2018.
Vydání:1st ed. 2018.
Edice:JSS Research Series in Statistics,
Témata:
ISBN:9789811000775
ISSN:2364-0057
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101353.0
007 cr nn 008mamaa
008 190204s2018 si | s |||| 0|eng d
020 |a 9789811000775 
024 7 |a 10.1007/978-981-10-0077-5  |2 doi 
035 |a CVTIDW11237 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Funatogawa, Ikuko.  |4 aut 
245 1 0 |a Longitudinal Data Analysis  |h [electronic resource] :  |b Autoregressive Linear Mixed Effects Models /  |c by Ikuko Funatogawa, Takashi Funatogawa. 
250 |a 1st ed. 2018. 
260 1 |a Singapore :  |b Springer Singapore ,  |c 2018. 
300 |a X, 141 p. 27 illus.  |b online resource. 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
500 |a Mathematics and Statistics  
505 0 |a Chapter 1. Linear mixed effects model -- Chapter 2. Autoregressive linear mixed effects model -- Chapter 3. Bivariate longitudinal data -- Chapter 4. State-space representation -- Chapter 5. Missing data, time dependent covariate -- Chapter 6. Pretest-Posttest data. 
516 |a text file PDF 
520 |a This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research. 
650 0 |a Statistics . 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-981-10-0077-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08517 
919 |a 978-981-10-0077-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237264  |d 237264