Mathematical Modeling of Lithium Batteries From Electrochemical Models to State Estimator Algorithms /

This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of L...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Hariharan, Krishnan S. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Green Energy and Technology,
Témata:
ISBN:9783319035277
ISSN:1865-3529
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101330.0
007 cr nn 008mamaa
008 171228s2018 gw | s |||| 0|eng d
020 |a 9783319035277 
024 7 |a 10.1007/978-3-319-03527-7  |2 doi 
035 |a CVTIDW11442 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Hariharan, Krishnan S.  |4 aut 
245 1 0 |a Mathematical Modeling of Lithium Batteries  |h [electronic resource] :  |b From Electrochemical Models to State Estimator Algorithms /  |c by Krishnan S. Hariharan, Piyush Tagade, Sanoop Ramachandran. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 211 p. 73 illus., 34 illus. in color.  |b online resource. 
490 1 |a Green Energy and Technology,  |x 1865-3529 
500 |a Energy  
505 0 |a Lithium batteries and underlying electrochemical processes -- Electrochemical model (EM) for lithium batteries -- Electrochemical impedance spectroscopy (EIS) models -- Equivalent circuit models (ECM) -- Reduced order models -- Battery management system - state estimator and algorithms -- Battery thermal models -- Battery life models. 
516 |a text file PDF 
520 |a This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals-often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across-from detailed electrochemical models to algorithms used for real time estimation on a microchip-is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework-often invoking basic principles of thermodynamics or transport phenomena-and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models. 
650 0 |a Energy storage. 
650 0 |a Energy systems. 
650 0 |a Electrical engineering. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-03527-7  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08722 
919 |a 978-3-319-03527-7 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237164  |d 237164