Measuring Uncertainty within the Theory of Evidence

This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Salicone, Simona (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Springer Series in Measurement Science and Technology,
Témata:
ISBN:9783319741390
ISSN:2198-7807
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101314.0
007 cr nn 008mamaa
008 180423s2018 gw | s |||| 0|eng d
020 |a 9783319741390 
024 7 |a 10.1007/978-3-319-74139-0  |2 doi 
035 |a CVTIDW11491 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Salicone, Simona.  |4 aut 
245 1 0 |a Measuring Uncertainty within the Theory of Evidence  |h [electronic resource] /  |c by Simona Salicone, Marco Prioli. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XV, 330 p. 154 illus., 141 illus. in color.  |b online resource. 
490 1 |a Springer Series in Measurement Science and Technology,  |x 2198-7807 
500 |a Mathematics and Statistics  
505 0 |a 1. Introduction -- Part I: The background of the Measurement Uncertainty -- 2. Measurements -- 3. Mathematical Methods to handle Measurement Uncertainty -- 4. A first, preliminary example -- Part II: The mathematical Theory of the Evidence -- 5. Introduction: probability and belief functions -- 6. Basic definitions of the Theory of Evidence -- 7. Particular cases of the Theory of Evidence -- 8. Operators between possibility distributions -- 9. The joint possibility distributions -- 10. The combination of the possibility distributions -- 11. The comparison of the possibility distributions -- 12. The Probability-Possibility Transformations -- Part III: The Fuzzy Set Theory and the Theory of the Evidence -- 13. A short review of the Fuzzy Set Theory -- 14. The relationship between the Fuzzy Set Theory and the Theory of Evidence -- Part IV: Measurement Uncertainty within the mathematical framework of the Theory of the Evidence -- 15. Introduction: towards an alternative representation of the Measurement Results -- 16. Random-Fuzzy Variables and Measurement Results -- 17. The Joint Random-Fuzzy variables -- 18. The Combination of the Random-Fuzzy Variables -- 19. The Comparison of the Random-Fuzzy Variables -- 20. Measurement Uncertainty within Fuzzy Inference Systems -- Part V: Application examples -- 21. Phantom Power measurement -- 22. Characterization of a resistive voltage divider -- 23. Temperature measurement update -- 24. The Inverted Pendulum -- 25. Conclusion -- References -- Index. 
516 |a text file PDF 
520 |a This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone's Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method. While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers to interact with the proposed approach by generating and combining RFVs through custom measurement functions. With numerous examples of applications, this book provides a comprehensive treatment of the RFV approach to uncertainty that is suitable for any graduate student or researcher with interests in the measurement field. . 
650 0 |a Probabilities. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-74139-0  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08771 
919 |a 978-3-319-74139-0 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237102  |d 237102