Mathematical Logic On Numbers, Sets, Structures, and Symmetry /

This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kossak, Roman (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Springer Graduate Texts in Philosophy, 3
Schlagworte:
ISBN:9783319972985
ISSN:2627-6046 ;
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101255.0
007 cr nn 008mamaa
008 181003s2018 gw | s |||| 0|eng d
020 |a 9783319972985 
024 7 |a 10.1007/978-3-319-97298-5  |2 doi 
035 |a CVTIDW11441 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Kossak, Roman.  |4 aut 
245 1 0 |a Mathematical Logic  |h [electronic resource] :  |b On Numbers, Sets, Structures, and Symmetry /  |c by Roman Kossak. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIII, 186 p. 28 illus.  |b online resource. 
490 1 |a Springer Graduate Texts in Philosophy,  |x 2627-6046 ;  |v 3 
500 |a Religion and Philosophy  
505 0 |a Chapter1. Mathematical Logic -- Chapter2. Logical Seeing -- Chapter3. What is a Number? -- Chapter4. Number Structures -- Chapter5. Points, Lines -- Chapter6. Set Theory -- Chapter7. Relations -- Chapter8. Definable Elements and Constants -- Chapter9. Minimal and Order-Minimal Structures -- Chapter10. Geometry of Definable Sets -- Chapter11. Where Do Structures Come From? -- Chapter12. Elementary Extensions and Symmetries -- Chapter13. Tame vs. Wild -- Chapter14. First-order Properties -- Chapter15. Symmetries and Logical Visibility One More Time. . 
516 |a text file PDF 
520 |a This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background. 
650 0 |a Mathematics-Philosophy. 
650 0 |a Mathematical logic. 
650 0 |a Arithmetic and logic units, Computer. 
650 0 |a Logic. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-97298-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08721 
919 |a 978-3-319-97298-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 237014  |d 237014