The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)

This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Guaschi, John (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:SpringerBriefs in Mathematics,
Témata:
ISBN:9783319994895
ISSN:2191-8198
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101233.0
007 cr nn 008mamaa
008 181103s2018 gw | s |||| 0|eng d
020 |a 9783319994895 
024 7 |a 10.1007/978-3-319-99489-5  |2 doi 
035 |a CVTIDW11255 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Guaschi, John.  |4 aut 
245 1 4 |a The Lower Algebraic K-Theory of Virtually Cyclic Subgroups of the Braid Groups of the Sphere and of ZB4(S2)   |h [electronic resource] /  |c by John Guaschi, Daniel Juan-Pineda, Silvia Millán López. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 80 p. 4 illus.  |b online resource. 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
500 |a Mathematics and Statistics  
505 0 |a Introduction -- Lower algebraic K-theory of the finite subgroups of Bn(S2) -- The braid group B4(S2) and the conjugacy classes of its maximal virtually cyclic subgroups -- Lower algebraic K-theory groups of the group ring Z[B4(S2)] -- Appendix A: The fibred isomorphism conjecture -- Appendix B: Braid groups -- References. 
516 |a text file PDF 
520 |a This volume deals with the K-theoretical aspects of the group rings of braid groups of the 2-sphere. The lower algebraic K-theory of the finite subgroups of these groups up to eleven strings is computed using a wide variety of tools. Many of the techniques extend to the general case, and the results reveal new K-theoretical phenomena with respect to the previous study of other families of groups. The second part of the manuscript focusses on the case of the 4-string braid group of the 2-sphere, which is shown to be hyperbolic in the sense of Gromov. This permits the computation of the infinite maximal virtually cyclic subgroups of this group and their conjugacy classes, and applying the fact that this group satisfies the Fibred Isomorphism Conjecture of Farrell and Jones, leads to an explicit calculation of its lower K-theory. Researchers and graduate students working in K-theory and surface braid groups will constitute the primary audience of the manuscript, particularly those interested in the Fibred Isomorphism Conjecture, and the computation of Nil groups and the lower algebraic K-groups of group rings. The manuscript will also provide a useful resource to researchers who wish to learn the techniques needed to calculate lower algebraic K-groups, and the bibliography brings together a large number of references in this respect. 
650 0 |a Group theory. 
650 0 |a K-theory. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-99489-5  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08535 
919 |a 978-3-319-99489-5 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236915  |d 236915