Machine Learning for Model Order Reduction

This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mohamed, Khaled Salah (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schlagworte:
ISBN:9783319757148
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101219.0
007 cr nn 008mamaa
008 180302s2018 gw | s |||| 0|eng d
020 |a 9783319757148 
024 7 |a 10.1007/978-3-319-75714-8  |2 doi 
035 |a CVTIDW11293 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Mohamed, Khaled Salah.  |4 aut 
245 1 0 |a Machine Learning for Model Order Reduction   |h [electronic resource] /  |c by Khaled Salah Mohamed. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XI, 93 p.  |b online resource. 
500 |a Engineering  
505 0 |a Chapter1: Introduction -- Chapter2: Bio-Inspired Machine Learning Algorithm: Genetic Algorithm -- Chapter3: Thermo-Inspired Machine Learning Algorithm: Simulated Annealing -- Chapter4: Nature-Inspired Machine Learning Algorithm: Particle Swarm Optimization, Artificial Bee Colony -- Chapter5: Control-Inspired Machine Learning Algorithm: Fuzzy Logic Optimization -- Chapter6: Brain-Inspired Machine Learning Algorithm: Neural Network Optimization -- Chapter7: Comparisons, Hybrid Solutions, Hardware architectures and New Directions -- Chapter8: Conclusions. 
516 |a text file PDF 
520 |a This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis. Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction; Describes new, hybrid solutions for model order reduction; Presents machine learning algorithms in depth, but simply; Uses real, industrial applications to verify algorithms. 
650 0 |a Electronic circuits. 
650 0 |a Microprocessors. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-75714-8  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08573 
919 |a 978-3-319-75714-8 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236856  |d 236856