Likelihood-Free Methods for Cognitive Science

This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-base...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Palestro, James J. (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Computational Approaches to Cognition and Perception,
Témata:
ISBN:9783319724256
ISSN:2510-1889
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101157.0
007 cr nn 008mamaa
008 180207s2018 gw | s |||| 0|eng d
020 |a 9783319724256 
024 7 |a 10.1007/978-3-319-72425-6  |2 doi 
035 |a CVTIDW11160 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Palestro, James J.  |4 aut 
245 1 0 |a Likelihood-Free Methods for Cognitive Science  |h [electronic resource] /  |c by James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XIV, 129 p. 27 illus., 7 illus. in color.  |b online resource. 
490 1 |a Computational Approaches to Cognition and Perception,  |x 2510-1889  
500 |a Behavioral Science and Psychology  
505 0 |a Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions. 
516 |a text file PDF 
520 |a This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. . 
650 0 |a Cognitive psychology. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-72425-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08440 
919 |a 978-3-319-72425-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236759  |d 236759