Likelihood-Free Methods for Cognitive Science
This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-base...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | Elektronický zdroj E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cham :
Springer International Publishing,
2018.
|
| Vydání: | 1st ed. 2018. |
| Edice: | Computational Approaches to Cognition and Perception,
|
| Témata: | |
| ISBN: | 9783319724256 |
| ISSN: | 2510-1889 |
| On-line přístup: |
|
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
MARC
| LEADER | 00000nam a22000005i 4500 | ||
|---|---|---|---|
| 003 | SK-BrCVT | ||
| 005 | 20220618101157.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 180207s2018 gw | s |||| 0|eng d | ||
| 020 | |a 9783319724256 | ||
| 024 | 7 | |a 10.1007/978-3-319-72425-6 |2 doi | |
| 035 | |a CVTIDW11160 | ||
| 040 | |a Springer-Nature |b eng |c CVTISR |e AACR2 | ||
| 041 | |a eng | ||
| 100 | 1 | |a Palestro, James J. |4 aut | |
| 245 | 1 | 0 | |a Likelihood-Free Methods for Cognitive Science |h [electronic resource] / |c by James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner. |
| 250 | |a 1st ed. 2018. | ||
| 260 | 1 | |a Cham : |b Springer International Publishing, |c 2018. | |
| 300 | |a XIV, 129 p. 27 illus., 7 illus. in color. |b online resource. | ||
| 490 | 1 | |a Computational Approaches to Cognition and Perception, |x 2510-1889 | |
| 500 | |a Behavioral Science and Psychology | ||
| 505 | 0 | |a Chapter 1. Motivation -- Chapter 2. Likelihood-Free Algorithms -- Chapter 3. A Tutorial -- Chapter 4. Validations -- Chapter 5. Applications -- Chapter 6. Conclusions -- Chapter 7. Distributions. | |
| 516 | |a text file PDF | ||
| 520 | |a This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. . | ||
| 650 | 0 | |a Cognitive psychology. | |
| 856 | 4 | 0 | |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-72425-6 |y Vzdialený prístup pre registrovaných používateľov |
| 910 | |b ZE08440 | ||
| 919 | |a 978-3-319-72425-6 | ||
| 974 | |a andrea.lebedova |f Elektronické zdroje | ||
| 992 | |a SUD | ||
| 999 | |c 236759 |d 236759 | ||

