Kähler Immersions of Kähler Manifolds into Complex Space Forms

The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool o...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Loi, Andrea (Autor)
Médium: Elektronický zdroj E-kniha
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing, 2018.
Vydání:1st ed. 2018.
Edice:Lecture Notes of the Unione Matematica Italiana, 23
Témata:
ISBN:9783319994833
ISSN:1862-9113 ;
On-line přístup: Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618101137.0
007 cr nn 008mamaa
008 180920s2018 gw | s |||| 0|eng d
020 |a 9783319994833 
024 7 |a 10.1007/978-3-319-99483-3  |2 doi 
035 |a CVTIDW10934 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Loi, Andrea.  |4 aut 
245 1 0 |a Kähler Immersions of Kähler Manifolds into Complex Space Forms  |h [electronic resource] /  |c by Andrea Loi, Michela Zedda. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a X, 100 p. 6 illus.  |b online resource. 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 23 
500 |a Mathematics and Statistics  
505 0 |a - The Diastasis Function -- Calabi's Criterion -- Homogeneous Kähler manifolds -- Kähler-Einstein Manifolds -- Hartogs Type Domains -- Relatives -- Further Examples and Open Problems. 
516 |a text file PDF 
520 |a The aim of this book is to describe Calabi's original work on Kähler immersions of Kähler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems. Calabi's pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally Kähler immersed into a finite or infinite-dimensional complex space form. This led to a classification of (finite-dimensional) complex space forms admitting a Kähler immersion into another, and to decades of further research on the subject. Each chapter begins with a brief summary of the topics to be discussed and ends with a list of exercises designed to test the reader's understanding. Apart from the section on Kähler immersions of homogeneous bounded domains into the infinite complex projective space, which could be skipped without compromising the understanding of the rest of the book, the prerequisites to read this book are a basic knowledge of complex and Kähler geometry. 
650 0 |a Differential geometry. 
650 0 |a Functions of complex variables. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-99483-3  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE08214 
919 |a 978-3-319-99483-3 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 236673  |d 236673